Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Virus Res ; 312: 198708, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35151773

RESUMO

Porcine epidemic diarrhea virus (PEDV) is an alpha-coronavirus that causes epidemic diarrhea in swines. The mortality of PEDV infection in one-week-old piglets is extremely high, which causes a huge significant economic loss to the global pig husbandry and blocks its healthy development. There was a lack of adequate studies to elucidate pathogenic mechanism associated with PEDV infection. In the present study, we detected the expression profiles of polyamine metabolism associated genes in Vero cells infected with PEDV by RT-qPCR. It is shown that PAOX(acetylpolyamine oxidase), SMOX(spermine oxidase), SAT1(spermidine-spermine acetyltransferase 1), ODC1(ornithine decarboxylase 1), DHPS(deoxyhypusine synthase) and EIF5A( eukaryotic initiation factor 5A) were significantly upregulated. Through intervening SAT1 level in PEDV-infected Vero cells, it is identified that overexpression of SAT1 inhibited PEDV replication by reducing polyamine levels. Furthermore, polyamine depletion and upregulation were found to regulate the proliferation of PEDV. PEDV infection in Vero cells did not result in a significant change in the protein level of eIF5A, and in addition, the activated eIF5A did not affect the proliferation of PEDV. Our results provided new insights into the influence of polyamine metabolism on the proliferation of PEDV.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Proliferação de Células , Chlorocebus aethiops , Infecções por Coronavirus/patologia , Poliaminas/metabolismo , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Células Vero
2.
Viruses ; 13(7)2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206713

RESUMO

In 2018, African swine fever broke out in China, and the death rate after infection was close to 100%. There is no effective and safe vaccine in the world. In order to better characterize and understand the virus-host-cell interaction, quantitative proteomics was performed on porcine alveolar macrophages (PAM) infected with ASFV through tandem mass spectrometry (TMT) technology, high-performance liquid chromatography (HPLC), and mass spectrometry (MS). The proteome difference between the simulated group and the ASFV-infected group was found at 24 h. A total of 4218 proteins were identified, including 306 up-regulated differentially expressed proteins and 238 down-regulated differentially expressed proteins. Western blot analysis confirmed changes in the expression level of the selected protein. Pathway analysis is used to reveal the regulation of protein and interaction pathways after ASFV infection. Functional network and pathway analysis can provide an insight into the complexity and dynamics of virus-host cell interactions. Further study combined with proteomics data found that ARG1 has a very important effect on ASFV replication. It should be noted that the host metabolic pathway of ARG1-polyamine is important for virus replication, revealing that the virus may facilitate its own replication by regulating the level of small molecules in the host cell.


Assuntos
Vírus da Febre Suína Africana/genética , Arginase/genética , Regulação Viral da Expressão Gênica , Macrófagos Alveolares/virologia , Poliaminas/metabolismo , Proteoma , Proteômica/métodos , Replicação Viral/genética , Animais , Citoplasma/química , Citoplasma/metabolismo , Citoplasma/virologia , Macrófagos Alveolares/química , Poliaminas/análise , Suínos , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA